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Abstract

The cross-peaks of 1H-NOESY spectra at different time delays are compared to a mode-coupling diffusion (MCD)
calculation, including the evaluation of the full 1H relaxation matrix, in the case of a 23 nucleotide fragment
of the stem-loop SL1 domain of HIV-1Lai genomic RNA mutated in a single position. The MCD theory gives
significant agreement with 1H relaxation experiments enabling a thorough understanding of the differential local
dynamics along the sequence and particularly of the dynamics of nucleotides in the stem and in the loop. The
differential dynamics of this hairpin structure is important in directing the dimerization of the retroviral genome,
a fundamental step in the infectious process. The demonstration of a reliable use of time dependent NOE cross-
peaks, largely available from NMR solution structure determination, coupled to MCD analysis, to probe the local
dynamics of biological macromolecules, is a result of general interest of this paper.

Introduction

Dynamic processes may be important in determining
the biological function of biopolymers. A typical case
is shown by the RNA molecule studied in this work.
This molecule is the SL1 domain of the RNA genome
in the HIV-1Lai retrovirus which is uniquely required
for efficient dimerization, a crucial point in the infec-
tious process (Laughrea and Jetté, 1994; Marquet et
al., 1994; Paillart et al., 1994; Skripkin et al., 1994;
Girard et al., 1995; Muriaux et al., 1995, 1996). This
domain has the form of a hairpin, characterized by
a highly conserved sequence which is organized in
a stem-loop structure. Dimerization is initiated when
two SL1 domains of two strands interact by base pair-
ing to form a kissing-loop which then isomerizes into
a more stable linear duplex (Mujeeb et al., 1998; Gi-
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rard et al., 1999; Theilleux-Delalande et al., 2000). In
the formation of the kissing-loop, it appears that the
two flexible loops have a critical role because they al-
low pairing of the two complementary loop sequences,
while the stem duplexes remain the same. In order to
study the dynamic properties of the SL1 stem-loop, the
nucleotide G12 has been mutated into A12, to prevent
the spontaneous dimerization process of the oligonu-
cleotide and to keep the purine character of the base
(Kieken et al., in preparation).

Among the several techniques available to probe
local dynamics and flexibility of biological macro-
molecules, NMR relaxation on different nuclei along
the sequence is the most important and universal tech-
nique. Usually, T1, T2 and NOE experiments on 13C
and 15N nuclei are performed. The data acquired by
these experiments, which generally require the enrich-
ment of the sample, are collected independently from
the main effort of determining the solution structure.
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Alternatively, or in addition, one can use 1H-NOESY
spectra, normally available from the solution structure
determination (Macura and Ernst, 1980; Wüthrich,
1986; Forster, 1991; Cavanagh, 1996). These data
may give local information on the dynamics of H-H
distance vectors via the contribution of all the H-H
pairs in the relaxation matrix. Normally, this infor-
mation is analyzed using empirical estimations of the
numerous time correlation functions involved and thus
increasing, for such an extensive interacting system,
the difficulties in obtaining a reliable understanding of
the physics involved. Two classes of approaches have
been used to investigate local dynamics from NMR
relaxation processes. In the first class, simple (Lipari
and Szabo, 1982; Clore et al., 1990) and more ad-
vanced (Tugarinov et al., 2001) fitting models of the
diffusive rotational and/or jump process are assumed
and a limited set of diffusive properties (diffusion con-
stants, reciprocal frames orientation and mean-field
parameters affecting these orientations) are identified.
The calculated data are then optimized by varying
these parameters to have the best agreement with ex-
periments. The second class of analysis consists in
calculating the NMR dynamical quantities by assum-
ing a model of the interactions between the macro-
molecule’s constituent particles: again, both direct
calculation of local order parameters through com-
puter simulations (Withka et al., 1991; Prompers et al.,
2001) or by normal-mode based analysis (Prompers
and Brüschweiler, 2000) require some hypothesis
about the ‘decoupling’ of overall rotation and internal
motions. It is, therefore, important to develop univer-
sal molecular approaches of the second class to the
internuclear vectors dynamics that avoid both the ap-
proximation of separation between time-scales in the
dynamics and the use of empirical parameters that are
typical of fitting procedures.

Such a theoretical approach was recently devel-
oped by using a mode-coupling solution to the diffu-
sion equation (Perico and Pratolongo, 1997; La Penna
et al., 1999b) describing the time evolution of fluctuat-
ing biological structures. This approach uses statistical
averages evaluated by atomistic Molecular Dynamics
(MD) or Monte Carlo simulations (Fausti et al., 1999;
La Penna et al., 1999a, 2000a). The MD simulation
algorithm applied to the macromolecule in the ex-
plicit water solvent with a few counterions has became
widely used for biopolymers because of its ability
to allow reasonable fluctuations of geometrical vari-
ables around structures obtained by X-ray or NMR.
In this approach the local dynamics of a biological

macromolecule, as probed by NMR techniques, are
described as the rotational diffusion of a fluctuating
structure, with the fluctuations estimated by molecular
simulations.

The results obtained by using MD computed av-
erages in diffusion theory agree in good measure to
the T1 experiments on 13C and 15N nuclei of small
DNA duplexes (Fausti et al., 1999, 2000; La Penna
et al., 2000b) and proteins (La Penna et al., 1999a,
2000a; Fausti et al., 2000). In this paper we apply
for the first time this theoretical approach to com-
pute all the H-H 2-rank time correlation functions
and therefore the full relaxation matrix that governs
the NOESY cross-peak intensities. We apply this ap-
proach to a 23 nucleotide fragment corresponding to
the G12→A12 mutated SL1 stem-loop, whose solu-
tion structure has been recently determined (Kieken
et al., in preparation). Finally, we compare experimen-
tal and calculated cross-peaks (hereafter abbreviated
as CPs) for selected H-H pairs along the nucleotide se-
quence both in the stem and in the loop. In conclusion,
the important properties of flexibility and dynamics of
the studied fragment are discussed.

Materials and 1H-NOESY cross-peaks

The ribooligonucleotide r(CUUGCUGAAGCACGCA
CGGCAAG) was obtained by automated synthesis
(Kieken et al., in preparation). NMR experiments were
carried out on an AMX-500 spectrometer operating
at 11.74 Tesla and processed on a X32 computer.
NOESY spectra were performed on a 2 mM degassed
and sealed sample. We used here the sequential assign-
ment already proposed (Kieken et al., in preparation).
A delay of 4 s was used in order to optimize the
signal-to-noise ratio of the NOESY spectra without
noticeable difference in the spin-state magnetization
of the different protons. The t1 data were zero-filled
to 2048 points and processed with a sine 90◦ phase
shifted function. This light apodization function did
not distort the signal intensity and the resulting peaks
had no truncation effect. Correct phasing of the data
in both directions was achieved with great care in or-
der to quench the zero-quantum contribution in the
cross-peak integration.

Each cross-peak value was obtained by dividing
the volume of the cross-peak by the volume of the cor-
responding diagonal peak (H5 for the H5-H6 NOE and
H1′ for the H1′-H6/8 pairs) obtained at zero mixing
time. Since some of the H5 resonances were over-
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lapped with the H1′ resonances, the volume measured
for each of the five unoverlapped H5 was compared
with the average value computed by dividing the total
volume of the diagonal containing all the H5 and H1′
resonances (between 5.0 and 6.1 ppm) by the corre-
sponding number of protons (23H1′ plus 10H5). This
average value was used for all the H5 or H1′ protons
since no significant deviations were observed between
the measured values.

The cross-peak volumes were calculated with in-
tegration routines of the UXNMR software package
(Bruker Spectrospin). The errors on CPs have been
computed as 10% for all the values larger than 0.005;
for the smaller CPs we have used an absolute error of
0.001.

We conclude defining the CP names used in the
sections concerning analysis and discussion:
− ‘H5-H6 intra’ indicates the CP between H5 and

H6 on the same pyrimidine;
− ‘H1′-H6/8 intra’ refers to the CP between H1′ and

H6 (in pyrimidines) or H8 (in purines), the protons
belonging to the same nucleotide;

− ‘H1′-H6/8 inter’ indicates an analogous CP as
above, but in this case H1′ belongs to the 5′
previous nucleotide in the sequence.

The relaxation matrix and the NOESY spectrum

In the 1H-NOESY experiment (Jeener et al., 1979;
Meier and Ernst, 1979; Sanders and Hunter, 1993;
Cavanagh, 1996) on the RNA fragment, in theory,
the transient NOE effects between all the 1H cou-
ples are observed. If there are g groups (Gk , k =
1, ..., g) of equivalent nuclei where each Gk has nk
spins with Larmor frequency ωk , the time evolution of
the magnetization is described by the Solomon equa-
tions (Solomon, 1955). In turn, the matrix elements of
the NOESY CPs evaluated at a mixing time t are given
as (Macura and Ernst, 1980; Forster, 1991; Neuhaus
and Williamson, 1989; Boelens et al., 1989):

Ohk(t) = [
exp(−Rt)

]
hk

=
∑
a

Vha exp (−mat) V −1
ak

(h, k = 1, ..., g; h �= k) (1)

with R the relaxation matrix, describing the transfer
of the magnetization between different groups, inside
each group and with the environment;ma and Vha are
the eigenvalues and eigenvectors of R, respectively.
The elements of the relaxation matrix are given in
terms of the transition probabilities by (Macura and

Ernst, 1980):

Rhk = 1

nk

∑
i,j

[
W
(2)
ij −W

(0)
ij

]
i ∈ Gh and j ∈ Gk (2)

for the transfer of the magnetization from a spin in the
group Gh to a spin in a different groupGk, and

Rkk = Rint
k + Rout

k + R
(1)
k � Rint

k + Rout
k (3)

for the diagonal terms, where Rint
k represents the

transitions in the group Gk:

Rint
k = 2

nk

∑
i<j

[
W
(1)
ij +W

(2)
ij

]
i, j ∈ Gk; (4)

Rout
k the transfer of excitation between spins inGk and

spins in the other groups:

Rout
k = 1

nk

∑
i,j

[
W
(0)
ij + 2W(1)

ij +W
(2)
ij

]
i ∈ Gk and j /∈ Gk; (5)

and R(1)k represents the transfer of excitation from Gk
spins to the environment. Note that this last term can
be ignored at short mixing times, as in the second
equality in Equation 3.

Finally, the a quanta transition probabilities W(a)
ij ,

relative to dipolar coupling between nucleus i and
nucleus j , are given in terms of spectral densities
(Macura and Ernst, 1980; Cavanagh et al., 1996):

W
(0)
ij = qijJij

(
ωi − ωj

) ; W
(1)
ij = 3

2
qijJij (ωi ) ;

W
(2)
ij = 6qijJij

(
ωi + ωj

)
(6)

with

qij = 1

20

(
γiγj

4πε0c2

)2

(7)

and Jij(ω) the spectral density defined below (Equa-
tions 21 and 26) relative to 2-rank time correlation
functions (TCFs) of the vector rij joining proton i and
proton j .

The W(a)
ij elements of Equation 6 may become ir-

relevant for many of the proton couples due to the
rij dependence, motivating the use of reduced relax-
ation matrices that involve only hydrogens in a certain
averaged distance.

In the case that the spin system can be divided
in only two groups of equivalent spins (g = 2), the
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Solomon equations can be solved in analytical form
giving the single CP:

O12 (t) = R12

�
· exp (−σ · t) · sinh (� · t)

σ = R11 + R22

2
; (8)

� =
√(

R11 − R22

2

)2

+ R12R21.

Between the extreme cases of the full relaxation ma-
trix and the simple case of only two non equivalent
groups of spins, many intermediate selections of the
interacting spins can be adopted in order to reduce the
number of H-H relaxations only to the important ones
(this point will be discussed below).

Diffusion approach to the calculation of the H-H
vector orientational dynamics

Given the equations of the previous section, relat-
ing the observables in the experiment to the 2-rank
TCFs describing the relaxation of the H-H vectors, we
can finally introduce a molecular description of these
relaxations.

This is accomplished here by adopting, for the first
time, the mode-coupling diffusion theory of the dy-
namics of a biological macromolecule to the computa-
tion of the relaxation matrix and the CP of 1H-NOESY
spectrum.

The diffusion theory treats the solvent hydrody-
namically and adopts a detailed molecular model for
the polymer in terms of beads (atoms or group of
atoms) connected by real or virtual bonds diffusing in
a atomistic potential. In the mode-coupling matrix rep-
resentationion of the diffusion equation, the potential
has no particular role, but is contained in the statistical
averages necessary to the theory. The beads are repre-
sented as points in position ri , characterized by their
friction coefficients ζi = 6πηai , with η the solvent
viscosity. The Stokes’ radii ai were calculated here
by using the ASA method (Pastor and Karplus, 1988)
with a zero probe radius by summing the surfaces of
each group constituent, according to the procedure
outlined in the literature (La Penna et al., 2000b).
The main polymer model uses four and three beads
for each purinic and pyrimidinic nucleotide (Table 1).
This model, together with more detailed ones, will be
described below.

Now, we briefly summarize the mode-coupling dif-
fusion approach to describe the dynamics in polymer

solutions (Perico and Pratolongo, 1997; La Penna
et al., 1999b). Given a polymer of Na beads of fric-
tion coefficients ζi and coordinates ri , i = 1, . . . , Na ,
connected byNb bonds (li , i = 1, . . . , Nb) the macro-
molecule dynamics, described by the variables li , is
governed by the operator L, adjoint to the diffusion
Smoluchowski operatorD:

∂ l
∂t

= Ll; L =
Na∑
i,j=1

[∇i · Di,j · ∇j

− (∇iU/kBT ) · Di,j · ∇j
]

(9)

where Di,j is the diffusion tensor to be defined below,
U is the potential energy of the beads as a function
of the bead coordinates, kB is the Boltzmann constant
and T is the absolute temperature.

By expanding the conditional probability (solu-
tion to the Smoluchowski equation) in a complete
set of eigenfunctions of L, the time autocorrelation
function (TCF) of any coordinate-dependent dynamic
variable with zero average f (t), may be expressed in
the standard form

〈f (t) f (0)〉 =
∑
i

〈f | ψi〉〈ψi |f 〉 exp(−λi t),

(10)

where −λi and ψi are the eigenvalues and the normal-
ized eigenfunctions of the operator L:

Lψi = −λiψi . (11)

By representing ψi in a set of basis functions # =
{φm,m = 1, . . . ,M},

ψi =
M∑
m=1

Cm,iφm, (12)

the diffusion eigenvalue Equation 11) may be written
in matrix form:

F C = S C �, (13)

with � = {&ij} the diagonal matrix of the eigenvalues
λm, C the eigenvector matrix of coefficients Ci,m, S
the metric matrix

Sij = 〈φi
∣∣ φj 〉 (14)

and F the equilibrium force matrix

Fij = − 〈
φi

∣∣Lφj
〉

=
Na∑

m,n=1

〈
(∇mφi ) · Dmn · (∇nφj )

〉
. (15)

The diffusion tensor D is given by
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Table 1. Bead models for the RNA molecule with Stokes’ radii computed from Accessible Surface Area (atom names as in PDB
standards)

Model Atoms Center Radius (nm)

B Backbone 5′-end: C5′, 1H5′, 2H5′, O5′, H5T O5′ 0.18

C4′, H4′, O4′, C1’, H1′, C2′, H2′, 1O2′, HO’2, C3′, H3′ C4′ 0.25

O3′, P, O1P, O2P, O5′, C5′, 1H5′, 2H5′ P 0.25

3′-end: C4′, H4′, O4′, C1’, H1′, C2′, 1H2′, O2′, HO’2, C3′, H3′, O3′, H3T C4′ 0.28

Cytosine N1, C2, O2, N3, C4, N4, 1H4, 2H4, C5, H5, C6, H6 N1 0.28

Guanine N9, C8, H8, N7, C5, C4 N9 0.19

N3, C2, N2, 1H2, 2H2, N1, H1, C6, O6 N1 0.25

Adenine N9, C8, H8, N7, C5, C4 N9 0.19

N3, C2, H2, N1, C6, N6, 1H6, 2H6 N1 0.24

Uracil N1, C2, O2, N3, H3, C4, O4, C5, H5, C6, H6 N1 0.28

B5 Backbone 5′-end: C5′, 1H5′, 2H5′, O5′, H5T O5′ 0.18

C4′, H4′, O4′, C1’, H1′, C2′, 1H2′, O2′, HO’2, C3′, H3′ C2′ 0.25

O3′, P, O1P, O2P, O5′ P 0.21

C5′, 1H5′, 2H5′ C5′ 0.13

3′-end: C4′, H4′, O4′, C1’, H1′, C2′, 1H2′, O2′, HO’2, C3′, H3′, O3′, H3T C2′ 0.28

Bases as in model B

BH Backbone as in model B

Cytosine 9/10 of the surface area for the corresponding bead in model B N1 0.27

1/10 of the surface area for the corresponding bead in model B H6 0.09

Guanine 9/10 of the surface area for the bead centered in N9 in model B N9 0.18

1/10 of the surface area for the bead centered in N9 in model B H8 0.06

as in model B N1 0.25

Adenine 9/10 of the surface area for the bead centered in N9 in model B N9 0.18

1/10 of the surface area for the bead centered in N9 in model B H8 0.06

as in model B N1 0.24

Uracil 9/10 of the surface area for the corresponding bead in model B N1 0.26

1/10 of the surface area for the corresponding bead in model B H6 0.09

Dij = DiHij,

Hij = 1δij + αζiTij(1 − δij), (16)

Tij = (8πη rij)
−1

[
1 + rijrij/r

2
ij

]
,

with H and T representing the hydrodynamic interac-
tion matrix and Oseen tensor, respectively.

Di = kBT/ζi (17)

is the diffusion coefficient of each bead and η the
solvent viscosity.

The factor α in the hydrodynamic interaction of
Equation 16 is a parameter whose values are restricted
to the range 0.5 < α < 1.0 so as to maintain a positive

definite H, while α = 1.0 corresponds to the full inter-
action strength related to the specific choice of friction
coefficients. In this work we used α = 0.7 according
to a recent choice for nucleic acids (La Penna et al.,
2000b).

The ensemble equilibrium averages, indicated
within angular brackets in the above equations, are
calculated as

〈a|b〉 =
∫
Peq(r)a(r)dr

=
∫

exp(−U(r)/kBT )a(r)b(r)dr/∫
exp(−U(r)/kBT )dr, (18)

with Peq(r) the equilibrium distribution function of
bead coordinates andU the potential function in terms
of the bead coordinates. In the following, the equi-
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librium statistical averages will be calculated by time
averaging along a MD trajectory for the full atomistic
RNA fragment in explicit water (see next section).
As the eigenfunctions ψi are orthonormalized, the
coefficient matrix C should satisfy the normalization
equation

(CT SC)ij = 〈ψiψj 〉 = δij. (19)

Accurate approximations to the TCFs evaluation are
obtained by taking basis functions in the basis set built
with increasing power of the variables, bond vectors
or their linear combinations, in the spirit of the mode-
coupling theory.

First and second order basis sets, which must be
given in the proper irreducible tensorial form (La
Penna et al., 1999b), are therefore bilinear and tetra-
linear, respectively, in the bond variables for 2-rank
functions.

The autocorrelation functions accessed by Nu-
clear Magnetic Resonance experiments are of the form
(Cavanagh et al., 1996):

TCF(t) =
2∑

M=−2

〈[
D
(2)∗
M,0(+(t))/r

3 (t)
]

[
D
(2)
M,0(+(0))/r

3 (0)
]〉

(20)

where D(2)
M,0 are irreducible spherical tensors (Rose,

1957) and+ and r are the direction and the modulus of
the given H-H vector, respectively. A widely used ap-
proximation to the exact TCF is obtained by extracting
r from the TCF:

TCF(t) �
〈
1/r6

〉 2∑
M=−2

〈[
D
(2)∗
M,0(+(t))

]
[
D
(2)
M,0(+(0))

]〉
=

〈
1/r6

〉
〈P2(cos(β(t))〉 (21)

where P2 is the Legendre polynomial of order 2 and β

is the angle that the H-H vector spans in time t .
As f of Equation 10 is anL-rank irreducible spher-

ical function of a molecular vector, the projections
〈f |φm〉 on the basis elements φm are non-zero if and
only if φm is anL-rank function. Therefore, the φm ba-
sis functions must be constructed as L-rank functions.
As a consequence, the S and F matrix elements are
averages of products of L-rank irreducible spherical
tensors. The evaluation of these elements is done sim-
ply by computing the scalar components (rotational
invariants) contained in the products of L-rank func-
tions in the matrix elements (La Penna et al., 1999b;
Fausti et al., 1999).

Summarizing, once a basis set of elements φm is
given, the equilibrium averages estimated via MD are
the rotational invariant of S and F matrix elements
(Equations 14 and 15) and the rotational invariant
of projections 〈f |ψi〉 (where f runs over each H-
H vector distance included in the relaxation matrix,
Equations 2–6. These latter projections are calculated
through the projections 〈f |φm〉 via Equation 12. Be-
ing the solution isotropic, the statistical averages are
rotational invariants. Therefore, the global rotation oc-
curring in the MD trajectory does not affect any result
obtained by diffusion theory and the correlation func-
tions of tensor variables approach asymptotically zero
in the infinite time limit. The global rotational tum-
bling is contained in the diffusion equation, but is not
assumed to be separated by any other relaxation mode
in the macromolecule. The identification of rotational
diffusion can be done only a posteriori by analysing
the separation between the rates that are calculated
using a given basis set and a given statistics.

We summarize below an efficient procedure for
finding a reduced basis set so as to compute accu-
rate tensor time correlation functions. The first step
amounts to solve the diffusion equation with a basis
that is linear in the bonds in order to get the first-order
dynamics for a vector (1-rank) function:{

li,x
}
i = 1, . . . , Nb. (22)

The first-order solution is obtained by diagonaliza-
tion of Equation 13, which gives the 1-rank first-order
vector eigenfunctionsmi,x :

mi,α =
Nb∑
j=1

Cj,i lj,α. (23)

For quasi-rigid structures, ignoring the modes of
higher rates means neglecting very small contributions
to the TCFs that correspond to fast decaying exponen-
tial terms related to these modes. This is evident to the
first-order and is still valid to higher orders due to the
combined effect of the products of fast decaying expo-
nential terms. Therefore, we can select a reduced basis
set, generally built with the e modes of Equation 23 of
lowest rates, with e equal to the dimensionality d of
the space or a value much lower than Nb.

For 2-rank functions, a reduced second-order basis
set RM2-II (La Penna et al., 1999b) can be generated
coupling the 1-rank first-order modes of Equation 23
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in the proper irreducible tensorial form:

φi1,i2,0 = 1
2 (3mi1,zmi2,z − mi1 · mi2),

φi1,i2,−2 =
√

3
8 (mi1,xmi2,x −mi1,ymi2,y),

φi1,i2,+2 =
√

3
8 (mi1,xmi2,y +mi1,ymi2,x),

φi1,i2,−1 =
√

3
8 (mi1,xmi2,z +mi1,zmi2,x),

φi1,i2,+1 =
√

3
8 (mi1,ymi2,z +mi1,zmi2,y),

i1 = 1, . . . , e; i1 � i2.

(24)

where i1 and i2 run over the set of modes cho-
sen among the 1-rank first-order solution of diffusion
equation. This 2-rank first-order basis set is then
expanded to second order adding the functions:

φi1,i2,i3,i4,M = φi1,i2,M(mi3 · mi4)

i3 = 1, ..., e; i3 � i4
(25)

Once e first-order vector modes are chosen, this
second-order basis set contains e(e + 1)/2 second
powers (Equation 24) and [e(e + 1)/2]2 fourth pow-
ers (Equation 25) of the 1-rank first-order modes of
Equation 23.

As observed in reference above, this second-order
basis set RM2-II is expected to give a good approxi-
mation to the dynamics of fluctuating biological struc-
tures because it gives in the rigid limit the ‘exact’
rotational dynamics.

Once the 2-rank TCFs are generated, they can be
Fourier transformed to the spectral densities

J (ω) = 2

∞∫
0

cos (ωt) TCF (t) dt, (26)

required to compute the relaxation matrix and the CP
values in NOESY spectra via Equations 1–7.

Molecular dynamics simulations

A 10 ns molecular dynamics trajectory was calculated
with the AMBER 5.0 program (Pearlman et al., 1995)
as described elsewhere (Kieken et al., in preparation).
It was obtained in the presence of 22 counterions
and 4313 explicit water molecules at 300 K in the
NPT ensemble using the particle-mesh Ewald algo-
rithm (Darden et al., 1993) for evaluating electrostatic
forces. The NMR structure of the stem-loop (Kieken
et al., in preparation) was used as the initial configu-
ration and the energy was minimized with 100 steps

of steepest descent algorithm followed by 900 conju-
gate gradient steps. Thermalization in the presence of
water and counterions was performed in two stages.
In the first stage only water was allowed to move
(BELLY option of AMBER) and successive 2 ps runs
at temperatures ranging from 50 K to 300 K by steps
of 50 K were performed with reassigning atomic ve-
locities every 0.5 ps. The second heating stage was
identical to the first one with the exception that all
atoms were free to move. This was followed by 200 ps
simulation at 300 K for further equilibration. During
the production period, atomic coordinates were stored
every 0.5 ps leading to a total of 20 000 configurations
to be analyzed. The time increment for solving New-
ton equations was 2 fs and the SHAKE algorithm was
used on all the covalent bonds (Ryckaert et al., 1977).
Along the trajectory, the root mean square fluctuation
of the kinetic energy was less than 0.5% of the total
kinetic energy.

Modeling the cross-peaks by diffusion theory
coupled to MD simulations

The first test to perform is the dependence of the cal-
culated CPs on the choice of the beads in the polymer
model. The basic model (model B hereafter) has two
groups in the backbone: one is centered in P (grouping
the phosphate and the methylene 5′) and the other in
C4′ (grouping the ribose ring atoms). Pyrimidine bases
are represented by only one bead centered in N1, while
purine bases are divided into two beads one centered
in N9 (grouping imidazole ring atoms) and the other
in N1 (grouping the remaining atoms of the base) (see
Table 1). The 5′ end is the group HO-CH2 centered
in O5′; for the 3′ end, the terminal OH is added to
the ribose bead. This first choice is motivated by the
good modeling obtained in previous studies on DNA
fragments (Fausti et al., 1999; La Penna et al., 2000b).
Nevertheless, two other models have been considered
(Table 1). The first model (model B5) separates the
methylene group centered in C5′ from the phosphate
bead: this was motivated by indications of differential
mobilities in nucleic acids in previous studies (Briki
and Genest, 1995; Bruant et al., 1999). The second
model (model BH) differs from model B by separat-
ing atom H6 for pyrimidine and H8 for purine from
the bead centered in N1 to better describe a system
of interacting hydrogens as that probed by NOESY
experiments.
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Figure 1. NOESY cross-peak intensities (CP) for different H-H pairs in each nucleotide for different bead models in the diffusive approach:
H5(i)-H6(i) intra at 50 ms mixing time (A); H1′(i)-H6/8(i) intra (B) and H1′(i−1)-H6/8(i) inter (C) at 100 ms mixing time. Model B (squares);
model B5 (diamonds); model BH (circles).

For the comparison of the performance of different
bead models, the diffusion calculations of the CPs at
ν = 500 MHz were performed using the reduced basis
set RM2-II with e = 3. The mixing time delay was set
to 50 ms for H5-H6 intra pairs and 100 ms for H1′-
H6/8 pairs, respectively, to be consistent with further
calculations and comparisons with experiments. Fig-
ure 1 shows that the effect of the bead model is overall
very small, models B and BH giving almost coinciding
results, just showing that it is not necessary to con-
sider explicitly the hydrogens, from a hydrodynamic
point of view; model B5 displays a modest difference
which is related to the separation of C5′ from the phos-

phate (Bruant et al., 1999). In consideration of these
results, in the following comparisons and discussions
we adopt only the simpler model B.

Is there any effect of the number of first order vec-
tor modes e in the second order diffusion calculations?
Figure 2 shows that computations with e = 4 or 5
in respect to the case e = 3 does not give impor-
tant additional contributions to the CPs. Effects, even
though small, are visible only in the loop as is rea-
sonable, since the loop is more flexible than the stem.
That is to say, according to the statistics used here, the
modes of high rate describe fast decaying fluctuations
of small importance for the CP intensities at the chosen
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Figure 2. NOESY cross-peak intensities (CP) for different H-H pairs in each nucleotide for bead model B using different basis sets in the
diffusive approach: H5(i)-H6(i) intra at 50 ms mixing time (A); H1′(i)-H6/8(i) intra (B) and H1′(i−1)-H6/8(i) inter (C) at 100 ms mixing time.
Mode-coupling approximation with e = 3 (squares); e = 4 (diamonds); e = 5 (circles).

mixing times. Therefore we decide to perform further
computations using e = 3 to save computing time.

In Figures 3A–C we analyze the dependence of the
CP patterns on the length of the trajectory in the three
cases of H5-H6 intra, H1′-H6/8 intra, H1′-H6/8 inter
pairs. First, the effect of flexibility on the CPs values
must be noticed that is particularly evident for H5-H6
intra pairs (Figure 3A), where the H5-H6 distance r is
almost constant (see later comments to Figure 4A). In
the case of the starting rigid structure, the variation of
CPs in Figure 3A is mainly due to the factor r−6 where
r ranges from 0.23 to 0.26 nm. But this variation is
spread over all the C/U residues representing the ef-

fect on CPs of a configuration where the inter-proton
distances are thermally distributed. On the other hand,
CPs resulting from the statistical averages for the fluc-
tuating structure are clearly separated in two domains,
the stem (residues 1, 2, 3, 5, 6, 17 and 20) and the loop
(residues 11, 13 and 15): there is no evidence both in
X-ray crystallography and in NMR that a significant
change of C/U base ring average interatomic distances
occurs with stacking or hydrogen bonding of bases. In
the following analysis, the correlation between H5-H6
intra CPs and the orientational mobility of the H5-H6
unit vector will be shown.
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Figure 3. NOESY cross-peak intensities (CP) for different H-H pairs in each nucleotide for bead model B with e = 3 for different MD
trajectory lengths: H5(i)-H6(i) intra at 50 ms mixing time (A); H1′(i)-H6/8(i) intra (B) and H1′(i−1)-H6/8(i) inter (C) at 100 ms mixing time.
Rigid starting structure (plus); trajectory of 2 ns (crosses); 4 ns (asterisks); 6 ns (squares); 8 ns (diamonds); 10 ns (circles). Some of the data for
the rigid structure are out of range in the y axis and are not displayed to emphasize the behaviour of the other data.

After the trajectory has reached the length of 6 ns,
it can be seen from all three plots in Figure 3 that the
effects of the statistics on the calculated CPs are in
general modest. In the case of H5-H6 intra, the only
exception is nucleotide C11, where a clear reduction
of the CP is produced by adding the last two nanosec-
onds of the trajectory. As observed elsewhere (Kieken
et al., in preparation), this effect is related to an evident
change in the structure of the RNA fragment occurring
during the third quarter of the trajectory, when base
C11 is pushed outside of the loop, while bases G10
and A12 are directed inward. Significant variations of

CPs along with the trajectory length can be observed
in Figure 3B for residues 10 and 12 that are affected
by the same conformational change. Figure 3C shows
that the convergence of computed CPs with the tra-
jectory length is not achieved. A discussion on the
specific case of H1′-H6/8 inter CPs will be presented
later in the frame of the effects of relaxation pathways.
The above comments about figures 3A and 3B do not
change the possible conclusions of the comparisons
with the experiments given the errors in both the calcu-
lations and experiments. Nevertheless, it is a warning
on the fact that the statistics we use may badly describe
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slow fluctuations on the scale of several nanoseconds,
which in turn may affect the real statistics. This is a
general problem to consider when dealing with these
types of computations.

Comparison with NOESY experiments

Before comparing MCD calculations and NMR data,
we focus on the fact that the most reliable CPs are
those measured at the short mixing time of 50 ms
for H5-H6 intra pairs, atoms which are very close at
an almost constant distance (0.244 ± 0.008 nm). For
these reasons the estimated errors are not so large so
as to question the general differential trends for the
stem and the loop and it is expected that the compu-
tation of the CP does not require the knowledge of
the inter-proton distance variation. In Figure 4A, the
experimental values show the different behavior be-
tween the two domains in the molecule: the CPs in
the stem are higher than those in the loop and have
similar values in the two strands which indicates the
larger mobility of the loop. A doubt could arise about
nucleotide C20, whose value is slightly lower than the
average value of the CPs in the stem but still higher
than those in the loop. These important differences
between stem and loop are well highlighted by the cal-
culations, where the separation between the behavior
of the loop and the two strands of the stem is even
more evident. As regards the calculations, the CP in
nucleotide C11 is slightly lower than the average of
the other CPs in the loop (and in addition compared
to its corresponding experimental value). In this case,
this behavior could be due to an artifact in the statis-
tics. The general features of Figure 4B are similar,
but with the noteworthy difference that in the loop re-
gion there is a larger dispersion of the points both in
experiments and calculations (even though differently
located) which indicates an even larger disorder or mo-
bility in the loop for H1′-H6/8 intra CPs. In addition,
we must also take note that the high calculated values
at nucleotides G10, A12 are due to the MD statistics,
as discussed below. In the case of H1′-H6/8 inter CPs
(Figure 4C), despite the high dispersion of both theo-
retical and experimental points, we can see again, on
average, lower values in the loop well matched by the
calculations. These general similarities will be better
understood after viewing the analysis and discussions
of the following section.

Understanding the differential mobility of the
RNA fragment and discussion

What can we deduce by the MCD calculations on the
important mobility effects in the RNA fragment?

A first point which can be addressed is an analysis
of the most relevant contributions to the full relaxation
matrix that are responsible of the NOESY spectrum.
While the above calculations were performed using
the full relaxation matrix including all the 252 hydro-
gens in the molecule (full CPs), now we consider also
the CPs calculated by reducing the number of the in-
teracting hydrogens. For each H5-H6 or H1′-H6/8 pair
the CP has been evaluated defining an isolated spin-
system that contains only the hydrogen atoms within
a distance of 0.6 nm from each of the two observed
protons (hereafter indicated as reduced CPs). In addi-
tion, we have considered the CP values arising only
from the direct dipolar coupling of the two observed
hydrogens (single CPs) (see Equation 8). Figures 5A
and 5B show that the calculated reduced CPs almost
coincide with the full ones, while the single values
are only slightly higher. This indicates that for H5-
H6 and H1′-H6/8 intra CPs the contribution of the
hydrogens located further than 0.6 nm from the ob-
served atoms is negligible at these mixing times and
the direct coupling between spins accounts for the
largest contribution. Different is the case of Figure 5C
which involves H1′-H6/8 inter CPs of contiguous nu-
cleotides, characterized by larger distances than in the
case of the previous intra CPs. In the case of the loop
CPs a differentiation of the contributions has a limited
meaning due to the very small CP values and will be
not pursued here. On the contrary, on the two strands
of the stem, while full and reduced CP calculations are
almost coincident as in Figures 5A and 5B, the single
CPs are very similar for the two strands and ignore
the dispersion of the full calculation and of the exper-
imental data. At this point it is appropriate to observe
that the single H1′-H6/8 inter CPs, unlike full and re-
duced CPs, show a good convergence along with the
trajectory length (calculations not shown). The single
calculation gives a direct reliable description of the
relaxation of the H1′-H6/8 distance and for this rea-
son is a better index of the molecule’s local mobility.
Looking at the single calculations, the three cases are
much more similar even though they are related to dif-
ferent distances and have such different magnitudes.
From Equation 8, at short mixing times, one derives
that the single CPs are proportional to the correlation
times, τ, of the 2-rank TCF relative to the distance
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Figure 4. Comparison between calculated and experimental NOESY cross-peak intensities (CP) for different H-H pairs in each nucleotide.
Calculations for bead model B with e = 3 and MD trajectory of 10 ns (squares); experimental data (points with error bars). Pairs H5(i)-H6(i)
intra at 50 ms mixing time (A); H1′(i)-H6/8(i) intra (B) and H1′(i−1)-H6/8(i) inter (C) at 100 ms mixing time.

vectors of the observed pairs. The single CPs are more
sensitive to the local dynamics of the observed pair of
hydrogens than the full CPs, because the latter CPs are
the complicated result of relaxing processes of many
distances, due to spin diffusion.

In order to separate the effects of the distances and
of the orientational fluctuations on the single CPs, we
report in Figures 6A–C the comparison between the
correlation times, τ, of the function observed in NMR
and those of P2(t), τo . According to the discussion
in reference Fausti et al. (1999) the sum of two ex-
ponential functions is a close approximation to the
P2(t) TCF. The first exponential function, associated

to overall rotational diffusion, has an amplitude that
is an order parameter. For this molecule we observed
that the order parameter displays the same behavior
as τo (results not shown). Therefore, the behavior of
the latter correlation time in the three patterns reflects
only the order in the two strands of the stem compared
to the disorder of the loop. The correlation time τ dis-
plays, with respect to τo, the further effects of the H-H
distances. It is now clear that part of the behavior of
the single CPs is related not only to the relaxation of
the 2-rank spherical tensor, but also to the variation
of the H-H distances along the sequence. In the case
of the almost constant distances for H5-H6 CPs, these
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Figure 5. NOESY cross-peak intensities (CP) for different H-H pairs in each nucleotide for bead model B with e = 3 for the MD trajectory of
10 ns computed with different relaxation matrices: H5(i)-H6(i) intra at 50 ms mixing time (A); H1′(i)-H6/8(i) intra (B) and H1′(i−1)-H6/8(i)
inter (C) at 100 ms mixing time. Full relaxation matrix (full calculation, squares); all the protons within 0.6 nm from each member in the
observed pair (reduced calculation, circles); 2 × 2 matrix with only the two observed protons (single calculation, diamonds).

variations have no detectable effect, while they affect
significantly H1′-H6/8 CPs. For instance, nucleotides
10 and 12 show the shortest average distances between
H1′ and H8 atoms: this produces large H1′-H8 intra
CPs, both for single and full calculations. In turn, the
correlation times for the corresponding unit vectors
τo do not show larger values for nucleotides 10 and
12 (see comparison between τ and τo in Figure 6B).
Going back to Figure 4B, where the calculations are
compared to the data, we notice that, giving the sen-
sitivity of intra CPs to H-H distances shown above,
experiments for A12 do not display such a short dis-

tance. Therefore, the short calculated distance could
be due either to the confinement of the structure in a
local minimum or to a deficiency in the force-field.
On the other hand, Figure 6C shows that the large
distances involved in the H1′-H6/8 inter pairs flatten
the significant variation of τo in the loop (C11, G14
and C15).

Finally, we explain the large residual difference be-
tween the single and the full inter CPs of Figure 5C.
The large increase of the CPs in the full pattern is
a clear evidence of the importance of the non direct
H-H interactions. In fact, in this particular case the
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Figure 6. Comparison between calculated correlation times for different H-H pairs in each nucleotide for bead model B with e = 3 and MD
trajectory of 10 ns. Exact time correlation function (Equation 20 in the text, diamonds and right y axis); orientational time correlation function
(Equation 21 in the text, squares and left y axis). Pairs H5(i)-H6(i) intra (A); H1′(i)-H6/8(i) intra (B) and H1′(i−1)-H6/8(i) inter (C).

observed hydrogens are so far apart that the magneti-
zation transfer is enriched by interactions with other
closer hydrogens. For instance, the H1′(i)-H2′(i) and
H6/8(i+1)-H2′(i) distances are around 0.22 nm as op-
posed to the long H1′(i)-H6/8(i+1) distance (about
0.5 nm). Note that for DNA, also the intra case dis-
plays spin-diffusion effects due to the presence of H2′′
that substitutes the 2′ hydroxyl (Gaudin et al., 1995).

What is the effect of the fluctuations of the H-H
distances on the CPs?

In Figure 7B and B the full CPs calculated from
the second rank TCF relative to the distance vectors
of the pairs, Equation 20, and from the second rank
orientational TCF with averaged 1/r6, Equation 21,

are compared. Negligible effects are found in the case
of H5-H6 intra (results not shown) because the only
important distance is the stiff H5-H6 distance. In the
H1′-H6/8 intra case, the contributions are significant
mainly in the loop and at the border of the stem, where
the fluctuations are more relevant. In the inter case
the effect of fluctuations on these large distances is
observed along the whole sequence both in the loop
and in the stem. In any case, the contribution of dis-
tance fluctuations is modest and cannot affect the main
conclusions of the calculations.
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Figure 7. NOESY cross-peak intensities (CP) for different H-H pairs in each nucleotide for bead model B with e = 3 for the MD trajectory of
10 ns computed with the two time correlation functions defined in the text: exact time correlation function (Equation 20 in the text, diamonds);
orientational time correlation function (Equation 21 in the text, squares). Pairs H1′(i)-H6/8(i) intra (A) and H1′(i−1)-H6/8(i) inter (B).

Conclusions

The diffusive dynamics of the mutated stem-loop SL1
domain in the HIV-1Lai genome has been described
within the mode-coupling approximation. This RNA
domain has a key role in the dimerization of the HIV-
RNA and is characterized by a structured double helix
stem and a flexible loop of nine nucleotides. The dif-
fusive approach enables both a detailed understanding
of the NOESY NMR relaxation data and an atomistic
description of the dynamics.

In particular, the 1H-NOESY data related to close
hydrogens, like the H5-H6 pairs in pyrimidines, can
be considered as probes for monitoring local dynam-
ics along the sequence: these H5-H6 intra cross-peaks
are characterized by significant and reliable intensi-
ties at low mixing times, with minimal experimental
errors. The low mixing time allows the neglecting of
relaxation mechanisms (like the transfer of excitation
to the environment) that become significant as mixing
time increases and difficult to model in the relax-
ation matrix. The diffusion approach, applied to these
data enables a quantitative analysis of the differential
mobilities in the stem and loop, confirming the high
disorder of the loop. Again, it must be remarked that
this quantitative comparison can be performed using
1H-NOESY maps that do not require expensive and
time-consuming sample enrichment.

In the case of hydrogen pairs located at far distance
in space, the agreement with experiments is only qual-

itative. Nevertheless, the diffusive analysis helps in
the separation of different contributions to the CPs:
the orientational mobility of the observed H-H unit
vector; the effect of the observed H-H distance both
fluctuating and in the average; finally, the effect of
relaxation pathways alternative to the direct one. In
the case of H5-H6, only the first process is important
due to the short and stiff distance involved. For H1′-
H6/8 intra CPs we demonstrated the importance of
the average distances in modulating the effect of the
orientational mobility. Because of the large sensitivity
of CPs at larger mixing times to correct estimates of
the average distances between protons, it is clear and
well known that these data are best suited for structure
determination.

Finally, for inter CPs only, alternative relaxation
pathways become important especially in the stem.
Inclusion of H-H distance fluctuations in the TCF in-
troduce minor effects which can be observed mainly
in the loop for H1′-H6/8 CPs.

Globally, the main general conclusion is that an ac-
curate analysis is necessary to extract from the cross-
peak data the real local mobility. We have shown that
this analysis may be provided by using the diffusive
approach and that short mixing time CPs relative to
proton pairs that are close in space can be used as good
measures of mobility provided the CPs can be easily
obtained and are reliable. In this respect, the analysis
of such CPs can be a valid alternative to measurements
of 13C or 15N nuclear magnetic relaxation parameters
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in enriched samples, thus reducing significantly the ef-
forts to obtain information about the macromolecular
mobility. Even if analysis of 1H-NOE build-up rates
are reported in the literature by using MD simulations
and several diffusive approximations (Whitka et al.,
1991), this is the first time that 1H-NOESY CPs are
shown to contain reliable information about molecular
mobility that can be quantitatively interpreted within
diffusion theory. The level of diffusion theory applied
in this paper does not preclude the manifestation of
mixed modes in the correlation functions because it
does not assume separation between time-scales in the
molecular dynamics. Rather, an a posteriori analysis
of the results allows the identification of the essential
relaxation modes that describe the experiments.

As regards the modeling of the diffusion approach,
the addition of more beads to the standard model, in-
cluding three or four beads in the bases for pyrimidines
or purines, respectively, gives only modest contribu-
tions. In the construction of higher order basis sets,
the consideration of only three 1-rank first-order ro-
tational modes is a sufficiently good approximation.
Note that this does not mean that only rotational diffu-
sion is assumed because even these lower-rate modes
are affected by the fluctuations of the structure. This
set-up, due to its simplicity, can be extended to larger
molecules.

The major limitation of the method consists in the
approximation to the conformational statistics, which
is here evaluated by time averaging along a molecular
dynamics trajectory, though the trajectory used in this
work is very long (10 ns) in terms of computational
time. It can be pointed out that for our 23-nucleotide
stem-loop, this trajectory is sufficient to well compute
most of the CPs. This occurs even in the case of in-
tra CPs with fluctuating interproton distances and of
inter CPs where the distances between the observed
hydrogens are large, fluctuating and the spin diffu-
sion plays a significant role at 100 ms mixing time.
Nevertheless, trapping in a local minimum, defects
on the empirical force-field and insufficient trajectory
length are the main origins of discrepancies between
theory and experiment. Any simulation technique able
to overtake such problems while keeping the essential
features of the force-field affecting biopolymer stabil-
ity will greatly enhance the quality of diffusion theory
results.
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